skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Driscoll, Tobin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Purpose: Fluorescence imaging is a valuable tool for studying tear film dynamics andcorneal staining. Automating the quantification of fluorescence images is a challenging necessary step for making connections to mathematical models. A significant partof the challenge is identifying the region of interest, specifically the cornea, for collected data with widely varying characteristics.Methods: The gradient of pixel intensity at the cornea–sclera limbus is used as the objective of standard optimization to find a circle that best represents the cornea. Results of the optimization in one image are used as initial conditions in the next imageof a sequence. Additional initial conditions are chosen heuristically. The algorithm iscoded in open-source software.Results: The algorithm was first applied to 514 videos of 26 normal subjects, for a total of over 87,000 images. Only in 12 of the videos does the standard deviation in thedetected corneal radius exceed 1% of the image height, and only 3 exceeded 2%. The algorithm was applied to a sample of images from a second study with 142 dry-eye subjects. Significant staining was present in a substantial number of these images. Visual inspection and statistical analysis show good resuls for both normal and dry-eye images.Conclusion: The new algorithm is highly effective over a wide range of tear film andcorneal staining images collected at different times and locations. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)